
LECTURE 22 LINEARISATION AND DIFFERENTIALS

Linearisation continued

Last class, we de�ned that the linearisation L (x) of a function f (x) at a particular point x = a is
the tangent line to f (x) at this point. More precisely, given (a, f (a)) a point on the graph of f (x), the
linearisation satis�es

L (x) = f (a) + f ′ (a) (x− a) .

The approximation

f (x) ≈ L (x)

of f by L is the standard linear approximation of f at x = a. The point x = a is the center of the
approximation.

Example. Find the linearsation of f (x) =
√
x+ 1 at x = 0.

Solution.

L (x) = f (0) + f ′ (0) (x− 0) = 1 +
1

2
√

0 + 1
(x− 0) = 1 +

1

2
x.

Let's also examine how accurate this approximation
√

1 + x ≈ 1 + 1
2x is.

Approximation True Value |True Value−Approximation|
x = 0.005,

√
1.005 ≈ 1 + 0.005

2 = 1.0025 1.002497 0.000003 < 10−5

x = 0.01,
√

1.01 ≈ 1 + 0.05
2 = 1.025 1.024695 0.000305 < 10−3

x = 0.2,
√

1.2 ≈ 1 + 0.2
2 = 1.10 1.095445 0.004555 < 10−2

x = 3,
√

1 + 3 ≈ 1 + 3
2 = 2.5 2 0.5

So, we see that near x = 0, this approximation is not terrible. But as we venture away from x = 0, say to
x = 3, the error is relatively large. We then must consider linearisation near x = 3 to have a better estimate.

Example. We then continue to �nd the linearisation of f (x) =
√
x+ 1 at x = 3.

L (x) = f (3) + f ′ (3) (x− 3) = 2 +
1

2
√

3 + 1
(x− 3) =

5

4
+
x

4
.

Then, let's check how good this approximation is, near x = 3. Consider x = 3.2. Then, the linearsation says

√
1 + 3.2 ≈ 5

4
+

3.2

4
= 2.05

where the true value is √
1 + 3.2 ≈ 2.04939.

However, with the linearisation given in the previous example,

√
1 + 3.2 ≈ 1 +

3.2

2
= 2.6,

which is obviously way o�.

Example. Linearisation of f (x) = (1 + x)
k
at x = 0.

Solution. The linearisation at x = 0 is

f (x) ≈ L (x) = f (0) + f ′ (0)x = 1 + k (1 + 0)
k−1

x = 1 + kx.
1
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This approximation works for any real number k near x = 0. That is,
√

1 + x ≈ 1 +
1

2
x;

1

1− x
= (1− x)

−1 ≈ 1 + (−1) (−x) = 1 + x;

3
√

1 + 5x4 =
(
1 + 5x4

) 1
3 ≈ 1 +

1

3

(
5x4
)

= 1 +
5

3
x4;

1√
1− x2

=
(
1− x2

)− 1
2 ≈ 1 +

(
−1

2

)(
−x2

)
= 1 +

1

2
x2.

Differentials

De�nition. Let y = f (x) be a di�erentiable function. The di�erential dx is an independent variable. The
di�erential dy (a dependent variable) is

dy = f ′ (x) dx.

Note that dy always depends on x AND dx.
One of the goals of di�erentials is to make estimate of things that are hard to compute directly. For

example, we know
√

4 very well. Can we use this to estimate
√

4.02?

Example. Find dy if y = x5 + 37x. Find its value when x = 1 and dx = 0.2.

Solution. dy =
(
5x4 + 37

)
dx. And thus

dy =
(

5 (1)
4

+ 37
)
· 0.2 = 8.4.

The di�erential dx is a deep concept. It shows in�nitesimal change in x-values � a very very small
change, almost negligible. But when paired with the instantaneous rate of change, i.e. the derivative, it
produces also an in�nitesimal change in y. dx is di�erent from ∆x, with the former being a sizeable change
in x-values, which also leads to a sizeable change in y-values, that is, ∆y.

∆y = f (x+ ∆x)− f (x) .

Below, we discuss the relationship between ∆x, dx,∆y, dy, and how it can be represented by ideas from
linearisation.

Let x = a and set dx = ∆x. The corresponding change in y = f (x)is

∆y = f (a+ dx)− f (a) = f (a+ ∆x)− f (a) .

The corresponding change in the tangent line L is

∆L = L (a+ dx)− L (a)

= f (a) + f ′ (a) [(a+ dx)− a]− f (a)

= f ′ (a) dx.
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That is, the change in the linearisation of f is precisely the value of the di�erential dy when x = a and
dx = ∆x. Therefore, dy represents the amount the tangent line rises or falls when x changes by an amount
dx = ∆x. That is, dy = ∆L, when dx = ∆x.

In other words, when dx = ∆x,

f (a+ dx) ≈ f (a) + ∆L = f (a) + dy = f (a) + f ′ (a) dx,

that is, we can approximate a function value f (a+ dx) with the knowledge of f (a), f ′ (a) and the horizontal
distance dx from the point of estimate a+ dx to the known point a.

Every di�erential formula such as the sum rule,

d

dx
(u+ v) =

du

dx
+
dv

dx
or

d

dx
(sin (u)) = cos (u)

du

dx

has a di�erential form,

d (u+ v) = du+ dv, or d (sin (u)) = cos (u) du

(as if you can cancel the dx from both sides, only when dx 6= 0).

Example. Find the di�erential of the following functions.

d (tan (2x)) = sec2 (2x) d (2x) = 2 sec2 (2x) dx;

d

(
x

x+ 1

)
=

(x+ 1) dx− xd (x+ 1)

(x+ 1)
2 =

xdx+ dx− xdx
(x+ 1)

2 =
dx

(x+ 1)
2 .

We can also make nice estimate about physical quantities when direct measurement is di�cult.

Example. The radius r of a circle increases from a = 10 m to 10.1 m. Use dA to estimate the increase
in the circle's area A. Estimate the area of the enlarged circle and compare your estimate to the true area
found by direct calculation.

Solution. Since A = πr2, the estimated increase (about x = a) is

dA = A′ (a) dr = 2πadr = 2π (10) (0.1) = 2πm2.

Therefore, since A (r + ∆r) ≈ A (r) + dA, we have

A (10 + 0.1) ≈ A (10) + 2π = π (10)
2

+ 2π = 102π,

i.e. the area of a circle with radius 10.1 m is approximately 102πm2.
However, we do know the true area:

A (10.1) = π (10.1)
2

= 102.01πm2.

So, with our di�erential estimate, we incur an error of 0.01πm2, which is the di�erence ∆A − dA where
∆A = A (10 + 0.1)−A (10.1).

Example. Use di�erentials to estimate (7.97)
1/3

.

Solution. We note that the function we need to deal with is f (x) = x1/3, and we are centering about a = 8.
Note this a is of your freedom, and we choose a = 8 because it is easy to evaluate f (8) (you are welcome to
choose a = 7, but it's hard to compute anyways, while incurring a lot of error).

Now, with a = 8, let's re-express 7.97 as

a+ dx = 7.97 =⇒ dx = −0.03.

Using the di�erential for f (x) = x1/3, we �nd

df = f ′ (x) dx =
1

3x2/3
dx
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we have

f (7.97) = f (a+ dx) ≈ f (a) + df

= 81/3 +
1

3 (8)
2/3

(−0.03)

= 2 +
1

12
(−0.03)

= 1.9975.

The true value of (7.97)
1/3

is 1.997497, so we are accurate up to 6 decimals, which is pretty impressive.
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